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Analyses of papillomaviruses that take as their point of departure an alignment, either of the nucleic
acid or amino acid sequences, will only be as sound as the alignment, which is itself an hypothesis. For
this reason, many sequence analyses are conducted over only “unambiguously alignable” stretches of
sequence, typically stretches for which the similarities are 50% or greater, and the information in the
difficult regions (similarities less than say 30%) is lost to the analysis. In view of the enormous diversity
of papillomavirus sequences, the alignments in Part II of the database publications up to this year were
focused of necessity upon groups of viral types, which were then “apposed” by eye. These restricted
alignments could not support analyses based upon the entire set of PV sequences. This year, in Parts II
and III, we have brought into play a new alignment strategy that holds some promise for simultaneously
aligning all members of the papillomaviral family.

Most alignment strategies are “progressive”, which is to say that the alignment unfolds from the
pairs of most similar sequences to the pairs of most dissimilar sequences; the essence of this approach is
captured by Doolittle’s dictum—“once a gap always a gap” [1]. McClure and coworkers critique twelve
different alignment methods, most of which are progressive, according to their abilities to correctly
identify ordered series of motifs in highly divergent proteins that have been experimentally studied [2].
Some of the newer multiple alignment programs are intentionally not progressive, partly for the reason
that progressive alignments may be trapped by local optima. The Hidden Markov Method (HMM)
approach, which we utilize and describe herein, emphasizes position-specific probability distributions
of character states, hence a gap in one portion of the alignment may be scored differently than a gap in
another portion of the aligment; most alignment programs have position-independent scoring schemes.
As HMM is centered upon the columns of information in an unfolding alignment, this approach,
sometimes referred to as a “generalized profile”, is indifferent to the relatedness of pairs of sequences
[3,4]; in order to achieve satisfactory results, HMM should be employed with large sets (40 or more
taxa) of highly divergent sequences such as is seen with papillomaviruses.

The HMM approach leads to a model for the sequence set that has been analyzed. Hence with
subsequent database searches, this model—sometimes in the form of a “most likely” sequence, a
consensus-like sequence—embodies all of the information contained in the data set, not merely one
particular sequence. We have also exploited the HMM-generated model for purposes of protein structure
prediction, using an array of contemporary algorithms (see Part III sections concerned with the E2 and
E4 proteins). Eventually, the sequence alignment and the structure prediction will become intertwined
in an effort to optimize the alignment.

In the following text, we first describe in some detail the HMM approach as we have applied it in
this compendium, especially in Part II, then we turn to a discussion of our attempts at protein structure
prediction.

A. MULTIPLE SEQUENCE ALIGNMENT USING HMM

The Hidden Markov Model (HMM), as it has been applied to sequence analysis, has many
similarities to what is called a “profile” [5,6] in terms of the information that it captures concerning
a set of related sequences. In a sense, each can be thought of as an extended consensus sequence in
which the information retained at each position includes the frequency with which each possible base or
amino acid residue is seen in the sequence set at that position. The HMM is constructed from a number
of successive nodes generally corresponding to the columns of positional homology of an alignment;
each of these nodes contains a match state, an insert state and a delete state. Associated with each of
the states in the model is a vector of probabilities that specify the likelihood with which the system
might pass to each member of the set of next possible states. Also associated with match states and
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insert states are vectors of probability specifying the likelihood that the system will generate or “emit”
each possible amino acid or nucleotide when in that state (delete states allow for the possibility that a
sequence not have a character in a certain column).

The resultant architecture of the HMM allows one to establish a correspondence between the
characters of a given sequence and the states of the model. The succession of the characters in the
sequence will thus determine a path through the states of the model, and associated with this path will
be a likelihood determined both by the probabilities of transition between successive states and the
probability that each state has for generating the character that has been assigned to it. Provided that all
the probabilities in the model, including both transition and emission probabilities, are non-zero, then
each path through the model that is permissible according to the rules governing transitions from one
node of the model to the next will have a non-zero probability of generating the given sequence. The
task of finding the optimal path through the model for a given sequence, i.e. the path with the highest
likelihood, can be thought of as aligning the sequence to the model, and may be solved using dynamic
programming techniques.

The most important differences between the profile and the HMM lie not in the resultant infor-
mation structures, but in the means by which these structures are generated from the sequence data.
As with a consensus sequence, the profile is generated from a set of sequences whose alignment has
been determined by some independent means. The parameters for describing an HMM can also be
derived from a given alignment in this manner. More importantly, however, there exists an algorithm
for HMMs that allows one to determine the parameters of the model having the highest likelihood (at
least within the neighborhood of the initial model) given a set of unaligned sequences. This approach
is quite similar to certain techniques used in connection with artificial intelligence applications, and is
known as “training” the model.

The algorithm used in training the parameters of an HMM involves an iterative approach that
uses an initial model to estimate an alignment of the given set of sequences, then uses this alignment
to re-estimate the model, and so on until the estimates converge to an optimum. For example, if we are
given a set of protein sequences that are thought to be related, a good estimate for an initial model can be
made by using the frequency distribution of amino acids in the unaligned set as a vector of probabilities
assigned to all the match states and insert states of the model; transition probabilities between the states
of the initial model can be assigned arbitrarily, or using a prior assessment of the relative frequencies
of indel events. All of the sequences in the given set will now be aligned in turn to the model, finding
the path through the model that maximizes the likelihood for the given sequence; by aligning all the
sequences in the set to the model in this pairwise fashion, one transitively defines a multiple sequence
alignment of the sequences to one another. The multiple sequence alignment thus created can be used
for an estimate of the parameters of the HMM, by counting the frequency of occurrence of each amino
acid at each position of the alignment and the frequency of indel events across the alignment. This
adjusted HMM then serves as a model for another round of alignment, and so on. It can be shown that
this process is guaranteed to converge to a local maximum of the likelihood function.

To address the problem of guaranteeing convergence to a global maximum for this function, a
variation of the simulated annealing algorithm can be applied at each step of the iterative algorithm; this
basically allows a stochastically generated sub-optimal alignment to be chosen for the re-estimation of
the model’s parameters, where the sub-optimality of the alignment decreases to zero with successive
iterations of the re-estimation procedure.

As should be clear from the preceding discussion, the model can be used to generate a multiple
sequence alignment of sequences, including sequences not belonging to the set used to train the parame-
ters of the model. One advantage to using the HMM over the standard dynamic programming algorithm
for multiple sequence alignments is that since one is really performing a set of pairwise comparisons of
the sequences to the model, the time and memory requirements increase only linearly with the number
of sequences, as opposed to exponentially with dynamic programming. Further, most algorithms for
sequence alignment require position-independent gap penalties, which is unrealistic in the case of most
proteins, which are composed of both conserved regions and indel-rich variable regions. The Hidden
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Markov Model, on the other hand has parameters for the likelihood of introducing an insertion or
deletion that may vary freely from position to position across the model.

An important application of the model is in the discrimination of related sequences from non-
related sequences. This is especially useful in connection with database searching. Associated with
each sequence in the database is a probability with which the sequence could be generated by the given
model. The distribution of likelihood scores for all the sequences in the database will provide a measure
of discrimination between similar and non-similar sequence. Using the HMM for database searching
has the advantage of utilising a great deal more of the information available for a family of sequences
than can be captured by query techniques that force one to use only one sequence from the family or, at
best, a standard consensus sequence as a query against the database. We are currently running database
searches with HMM-generated models and comparing the results to what might be obtained by other
methods (e.g., the pattern approach described in III-91-123 of the 1995 compendium).

We have employed the HMMER implementation that is publicly available (eddy@genetics.wustl.
edu). Another HMM suite that can be obtained is SAM (http://www.cse.ucsc.edu/research/compbio/
sam.html). These programs were originally applied to highly studied data sets (globins, EF-hand
proteins, etc.) for which some experimentally-based data were available to help assess the alignment
results [3,4]. With PV sequences, the results of the approach must be critiqued by scutinizing motifs—
do E2 binding sites align, for example? This is problematic as it is not preordained that all motifs (E2
binding sites) need align. Another difficulty encountered by the HMM (and every) alignment method
is large indels; we have the least confidence in those. To the extent that these stretches may have arisen
through acquisition of genetic material, they may not be intrinsically alignable as they may not be
homologous (see E4 alignments in Parts II and III, for example). In short, the alignments in Parts II and
III of the compendium are uncertain; alignments in previous publications may be “safer”—although
limited—because they were executed over relatively highly related sequences. Both are available on
the Web site (http://hpv-web.lanl.gov).

We shall now turn to structure-prediction and the potential interplay between primary sequence
alignment and structure-based alignment. In a later edition of the compendium, we will resume our
survey of PV similarities as uncovered by various methods, including HMM.

B. PV PROTEIN STRUCTURE PREDICTION

A promising starting point for predicting a structure for a given amino acid sequence is to determine
whether that sequence is sufficiently similar to any other sequence for which biophysical data, ideally
X-ray crystallographic data, is available. Sequences that are 50% are more similar will have similar
structures, and less similar sequences can have similar folds over core regions. Our focus herein will
be upon weakly similar sequences for which little or no biophysical data is available.

The earliest structure prediction algorithms, such as the Chou-Fasman algorithm, possess a pre-
dictive accuracy of no better than about 55%, partly due to the small set of known structures upon which
they depend and partly due to their assumptions. Three-state predictions—helix (H), sheet (E) and coil
(C)—are more accurate than four-state predictions that include turns (T), and the accuracy is poorest at
the ends of polypeptides and best in the core regions. Secondary stucture prediction in general is most
reliable for transmembrane helices. With the build-up of the protein database and the development
of more powerful algorithms, which especially take into account multiple sequence alignments, the
predictive accuracy for secondary structure can now reach better than 70%.

SOPM (self-optimised prediction method) is an example of a recent approach to protein secondary
structure prediction [7,8]. When applied to 239 dissimilar proteins of known structure, this algorithm
yields three-state prediction accuracies of 69% to 73%. Because it involves sizeable subdatabases of
sequences and their known structures, it will take longer to run than the older, less accurate algorithms.
The basic ideas used in the SOPM are as follows.

First, a sliding window of a fixed size is applied to the protein sequence of unknown secondary
structure to define a set of overlapping peptides. For example, suppose we are given the sequence
KPQRNSKSTAAL . . .with a window whose size is eight amino acids long and which is moved one
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amino acid over at each step. Then the resultant set of peptides will be KPQRNSKS, PQRNSKST,
QRNSKSTA, RNSKSTAA, NSKSTAAL. . . . Note that most of the amino acids of the original sequence
will belong to eight successive peptides, each differing from the previous peptide by the removal of an
amino acid from one end and the addition of an amino acid to the other.

Next, each of the peptides thus derived from the original sequence is now compared to a database
of peptides that has been created by similar means from a database of proteins of known secondary
structure. If the peptide from the query sequence matches a peptide from the database above a certain
threshold of similarity, then the similarity score is added to the conformational scores for each of the
amino acids in the peptide. In our example, suppose that the first peptide KPQRNSKS matches a
peptide in the database RPQRDTKS whose known structure isHHCCCEEE, and that the similarity
score between these two peptides is 30. If this score is above the threshold parameter, then 30 will be
added to the first two amino acids’ helical conformational scores, to the next three amino acids’ coil
conformational scores and to the last three amino acids’ sheet conformational scores. There may be
other peptides in the database matching the query peptide with alternative predictions for the secondary
structure of each of the amino acids, and all these predictive scores will be added together in each of
the conformational categories, resulting in a distribution of scores over the possible secondary structure
conformations. After the first query peptide has been compared, the process will continue for each of
the remaining peptides in the query set. The final scores for an amino acid belonging to eight successive
query peptides will thus include the scores for the comparisons of all eight of these peptides against the
entire database of peptides of known structure.

After all comparisons have been made, each amino acid in the original protein will have values
associated with its propensity to adopt a conformation in each of the secondary structure classes. From
the method of calculation detailed above it is clear that the empirical evidence for the prediction of the
secondary structure of the amino acid weighs most heavily for that class with the highest score.

However, there are two additional statistics concerning the distribution of the scores over all the
classes that can be revealing of the predictive power of this approach.

The first is the actual magnitudes of the scores for any given amino acid. If these are small relative
to the cumulative scores for other amino acids, it may indicate a lack of information for the prediction
of the secondary structure conformation of that amino acid. This could happen for two reasons: first,
if the amino acid is within the window size to either terminus of the original protein, it will belong to
proportionately fewer query peptides and have fewer comparisons with the database that could add to
its score; second, the amino acid could belong to a series of peptides that for some reason are poorly
represented in the database of known structures, and could thus have few comparisons to the database
having a large enough similarity score to be added to the conformational scores for the amino acid. In
either case, values that are low in magnitude indicate a lack of information in the database for the amino
acid in its given environment.

The second statistic that is pertinent to the predictive value of a set of scores for a given amino
acid is the difference between the scores of the highest and next-highest scoring classes of secondary
structure. If this difference is small, it may be inferred that the information in the database for the amino
acid in this particular environment is conflicting. For example, suppose that approximately half of the
peptides contributing to a given amino acid’s conformational scores support a helical structure, while
the other half support its being classed as an element of a beta sheet. In this scenario, it is likely that the
cumulative scores for helix and sheet for this amino acid would be nearly equal, and thus the difference
between them would be near zero. In order to make this statistic independent of the magnitudes of the
scores (which were accounted for in the former statistic), one may normalize the values by dividing the
difference between the highest and next-highest scores by the magnitude of the highest score.

It has been shown that the secondary structure of proteins changes much more slowly over time
than their primary structure, i.e. mutations in the sequence of amino acids comprising the sequence
often do not alter the secondary structure conformations adopted by the amino acids at these positions.
Therefore, much more information concerning the secondary structure of a class of related proteins can
be obtained from a set of these proteins whose primary sequences may have diverged considerably, but
which are not so evolutionarily distant to have diverged to any great extent from a structural standpoint.
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In order to make use of this information, one must first make structural predictions for each of the
protein sequences in the set, then align the proteins so that structurally homologous residues share
identical positions. Having done so, the SOPM algorithm may be easily extended to cover the entire
alignment, by simply adding up the conformational scores for each residue in a column to obtain the
overall prediction for that position in that class of proteins.

This is the approach that is taken by the SOPMA server (http://www.ibcp.fr/predict.html), which
accepts a single protein sequence as input, then does a database search for homologous sequences, and
computes both the secondary structure prediction for each of these sequences and the alignment of the
set. Finally, it computes a consensus secondary structure by averaging over the conformational scores
for the amino acids at each column of the alignment, using values of zero when a sequence has a gap at
a particular position. We have implemented the final step of this approach (see the E2 and E4 sections
in Part III) to look at alignments generated locally by the HMM methods. We have also classified a
position’s scores as strongly predictive (upper case letters) if they meet the two following criteria: the
score for the highest scoring class must be greater than the median value for the score for all positions
that were similarly classified, e.g. as helices; the normalized difference between the scores for the
highest and next-highest scoring classes must be in the upper quartile of these values for all positions
that were similarly classified. Thus in theory, a maximum of one-fourth of the positions classified by
the algorithm into each of the possible secondary structural conformations will be considered strongly
predictive, and in practice even fewer meet both criteria.

It is the widespread wisdom at this time to evaluate sequences, whenever possible, by more than
one algorithmic approach. The SOPMA server, therefore, submits a sequence to alternative methods of
structure prediction—Gibrat, Levin, DPM [9–11]—and also generates a consensus over those and the
SOPM itself. Thus we have submitted the HMM-generated “most likely” sequence to the SOPMA suite,
which produces a prediction using for the four individual algorithms and a consensus prediction. We
have also gained individual SOPM predictions for the various PV sequences and constituted a consensus
structure prediction as described in the previous paragraph; in the analyses presented for the E2 and E4
protein sequences, the latter prediction always appears at the top where it becomes the reference for the
alignment of structures.
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